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We recently proposed a new method to estimate coefficients, in. a given order of 

perturbative quantum field theory, without actually evaluating all of the Feynman Diagrams 

which occur in this order. Here we consider the R and R ratios in perturbative GCD, in the 

general MS-type scheme, described by the parameter t. For t = 0 (MS scheme), although the 

method works well for R it does not for R. However, due to a remarkable ‘relation which is 

satisfied by the coefficients, the method worlcr well for R, for larger values oft. It works well 

for R, for all values of t. This is true for all values of N, (0 I; N, I 6). 
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Perturbative Quantum Field Theory (PQPT) seems to describe nature very well, as 

manifested in the Standard Model of high energy physics. However there is as yet, no way to 

estimate, in a given order, the result for the coefficient, without the brute force evaluation of 

all of the Feynman diagrams contributing in this order. An attempt to do this was made recently 

by West’ in the case of the R ratio in perturbative QCD. 

R= 
om(c+c- - hadrolls) 

o(c’c--p*p-) 
(1) 

Although this method worked well for N, = 5, where N, is the number of fermions (quarks), 

it failed* for other values of N,. He is now attempting to calculate corrections to his resul?. 

Recently we proposed4 a new method to estimate coefficients, in a given order of PQFT, 

without actually evaluating all the Feynman Diagrams which occur in this order. Our method 

makes use of Padt? Approximants, with which we can predict the next term S, +- + t, in the 

perturbation series S, given by 

s = s, + s, x + . . + s,,, .P” 

The results which we used are: 

I s, = s,z/s, 
7. s, = q/s2 

II s, = 2szs,/s1 - $I$, so = 0 

III s, = 
2s,s,s, - s,sf - s,’ 

s: - SOS, 

(3) 



We applied these results to various perturbation series in QED and QCD. Our 

predictions agreed very well with the known results. Furthermore we were able to predict the 

next unknown term (NT) and the next-next (second) unknown term (NNT). Our method works 

best for ordinary series, positive definite, negative definite or oscillating series. For other 

(unusual) series, although the method still works, it requires more terms and does not seem to 

work as well as for ordinary series. Eqs (3) ensure that a positive-definite series remains 

positive definite, a negative-definite series remains negative definite and an oscillating series 

remains oscillating. One can tell if the method will work well in a given perturbative series by 

testing to see if a condition is well satisfied or not. That condition is 

A +A-‘=2 

v, where A = - 
2 

s2 

(4) 

(5) 

In this paper we will consider the R ratio and the R ratio in perturbative QCD. They 

are defined as follows: 

R = lys-v + hadrom) 
1 

lyr-ev i) 
(6) 

and R is given by eq (1). 



We first consider R in the general MS - type scheme given by the parameter t. 

h = e-r/2&.T (7) 

Obviously t = 0 corresponds to the li?s scheme, t = In 4x - y = 1.95 represents the MS 

scheme, t = 1.0 for the G scheme and t = 4 { (3) - 11 I 2 = -.692 yields our E schemer. 

The scale-dependent R (in the general MS-type scheme) is given by 

R = 3 c Q; R(r) - 1.24 (c ,$x3 (8) 

where R(r) = 1 + x + x2[(1.9857 + 2.75t) 
- NJ.1153 + .1667t)] + x3[(-6.6369 
+ 17.2964t + 7.5625r2) - N/(1.2001 

+ 2.0877t + .9167t2) + Nf (-.0052 
+ .0384t + .0278t2)] 

(9) 

where x = :and Nr is the number of fermions (quarks). We neglect the second term in eq (8) 

as it is small in aU cases of interest. 

Our results for t = 2, 4 and 10 are shown in Tables I, II and III, respectively. It can 

be seen that the method works very well and we can predict the NT and the NNT terms. For 

small t, however, the x3 term is negative, as can be seen from eq. (9), we have an unusual series 

and the method does not work. The NNT terms from II and III of eqs. (3) agree very well with 



those from I and so are not listed in our Tables. In Figures 1 & 2. we plot the estimated and 

exact terms as a function of t for two representative values of Nr @Jr = 1 and Nr =5, 

respectively). It can be seen that the agreement is excellent for t > 1 and improves as t 

increases. The reason for this behavior can be seen as follows. 

From I of eqs. (4) and eq (9) we obtain 

S, = S:/S, = 3.943 + 10.92r + 7.5625r2 
- N, (.458 + 1.2962r + .9167r2) 

+ N: (.0133 + .0384r + .0278r2) 

(10) 

The exact result is given by the x3 term in eq. (9). It can be seen by comparing this term with 

eq (10) that the tz, t*Nr, t*N: and tNrr coefficients agree. In fact, this agreement is exact! Now 

we understand why the estimate and the exact result agree so well for large t. 

We now turn to R,. In the general MS-type scheme R* is given by 

R,m = 3R,(t) 

where R,(r) = 1 + x + x2[(6.3399 + 2.75r) 

- N/(.3792 + .1667t)] + x’[(48.5832 
+ 41.2443r + 7.5625r2) - NJ7.8795 

+ 4.9905r + .9167r2) + Nf(.1579 
+ .1264r + .0278r2)] 

(11) 

The results for t = 0, 4 and 10 are shown in Tables IV, V and VI, respectively. It can be seen 

that the method works very well and we can predict the NT and the NNT terms. The IWT 

terms from II and III of eq (4) agree very well with those from I and so are not listed in our 
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Tables. In figures 3 and 4 we plot the estimated and exact terms as a function of t for two 

representative values of Nr (Nr = 1 and Nr = 5, respectively). It can be seen that in this case, 

the agreement is excellent, even for t = 0, and, again, improves as t increases. Again, we can 

see why we get this behavior. 

From I of eqs (4) and eq (11) we obtain 

s, = S~lS, = 40.1943 + 34.8695r 
+ 7.5625r2 - N/(4.8082 + 4.1989r 

+ .9167r2) + Nj(.1438 + .1264r 
+ .0278r2)] 

(12) 

The exact result is given by the x3 term of eq (11). It can be seen that again the t?, t’Nr, t’Nrr 

and tNrr coefficients agree. Again this agreement is exact! Moreover the t*, t2N, and t*N,Z of eq 

(10) and eq (12) also agree exactly! 

In conclusion, we have shown how one can accurately estimate coefficients of PQFT. 

In this paper we have considered the R ratio and the R ratio of PQCD in the general MS-type 

scheme. In our previous paper we have shown that the method works well for a, - q, q, ar, 

R, for Nt = 3 and t = 0 and the QCD beta-function for Nr = 1, 3 and 5, where a,, and a, are 

the anomalous magnetic moments of the muon and the electron, respectively. 
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TABLE CAPTIONS 

TABLE I 

TABLE II 

TABLE III 

TABLE IV 

TABLE V 

TABLE VI 

Results for R(t) for the estimated (first column) and the exact (if known) 
coeffkients (second column) for t = 2. NT refers to the next (unknown term and 
NM refers to the next-next (second unknown) term. 
(3). 

I, II and III refer to eqs 

Results for R(t) for the estimated (first column) and the exact (if known) 
coefficients (second column) for t = 4. NT refers to the next (unknown term and 
NNT refers to the next-next (second unknown) term. I, II and III refer to eqs 
(3). 

Results for R(t) for the estimated (first column) and the exact (if known) 
coefficients (second column) for t = 10. NT refers to the next (unknown term 
and NNT refers to the next-next (second unknown) term. I, II and III refer to 
eqs (3). 

Results for R,(t) for the estimated (first column) and the exact (if hewn) 
coefficients (second column) for t = 0. NT refers to the next (unknown term and 
NNT refers to the next-next (second unknown) term. 
(3). 

1, II and III refer to eqs 

Results for K(t) for the estimated (first column) and the exact (if known) 
coefficients (second column) for t = 4. NT refers to the next (unknown term and 
NNT refers to the next-next (second unknown) term. I, II and III refer to eqs 
(3). 

Results for R,(t) for the estimated (first column) and the exact (if known) 
coefficients (second column) for t = 10. NT refers to the next (unknown term 
and NNT refers to the next-next (second unknown) term. I, II and III refer to 
eqs (3). 
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TABLE I 
For R 
t = 2.0 

Nf = 0 A + A-’ = 2.0014 

56.04 58.21 

I 452.59 NT 

3519.14 NNT 

II 451.96 NT 

In 452.68 NT 

Nf = 2 A + A-’ = 2.0037 

43.41 40.85 

I 253.32 NT 

1570.76 NNT 

II 252.33 NT 

III 253.49 NT 

Nf = 4 A + A-’ = 2.0682 

32.39 24.96 

I 109.49 NT 

480.23 NNT 

II 99.80 NT 

III 111.55 NT 

Nf = 6 A + A-’ = 2.6399 

22.98 10.53 

I 23.14 NT 

50.86 NNT 

II -9.16 NT 

III 31.66 NT 

Nf = 1 A + A-’ = 2.0000 

49.52 49.35 

I 346.04 NT 

2426.56 Nwr 

II 346.03 NT 

III 346.04 NT 

Nf = 3 A + A” = 2.0200 

37.69 32.72 

I 174.42 NT 

929.40 N-NT 

II 170.40 NT 

III 175.20 NT 

Nt = 5 A + A-’ = 2.2037 

27.48 17.56 

I 58.85 NT 

197.18 NNT 

II 40.09 NT 

III 63.27 NT 
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TABLE II 
For R 
t = 4. 

Nf = 0 A + A-’ = 2.0072 

168.63 183.55 

I 2594.40 NT 

36671.04 NNT 

II 2577.26 NT 

III 2595.83 NT 

Nf = 2 A + A-l = 2.0020 

130.45 137.49 

I 1654.97 NT 

19921.52 NNT 

II 1650.63 NNT 

III 1655.38 NT 

Nf = 4 A + A-’ = 2.0001 

97.17 96.17 

I 938.21 NT 

9153.12 NNT 

II 938.11 NT 

III 938.22 NT 

Nf = 6 A + A-’ = 2.0206 

68.78 59.60 

I 428.26 NT 

3077.53 NNT 

II 418.10 NT 

III 429.65 NT 

Nf = 1 A + A-’ = 2.0051 

148.93 159.92 

I 2095.74 NT 

27463.97 N-NT 

II 2085.84 NT 

III 2096.63 NT 

Nf = 3 A + A-’ = 2.COO7 

113.20 116.23 

I 1269.82 NT 

13872.55 NNT 

II 1268.96 NT 

III 1269.91 NT 

Nf = 5 A + A-’ = 2.0040 

82.36 77.29 

I 658.22 NT 

5605.67 NNT 

II 655.39 NT 

III 658.57 NT 
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TABLE III 

For R 
t = 10.0 

N, = 0 A + A” = 2.0035 

869.41 922.58 

I 28866.48 NT 

903202.49 NNT 

II 28770.60 NT 

III 28869.85 NT 

Nt = 2 A + A-’ = 2.0027 

671.90 707.72 

I 19322.67 NT 

527562.67 NNT 

II 19273.19 NT 

III 19324.66 NT 

NI = 4 A + A-’ = 2.0013 

499.81 518.13 

I 12008.06 NT 

278296.24 NNT 

II 11993.05 NT 

III 12008.76 NT 

N=6 

I 

E II 

III 

A + A-’ = 2.GOOO 

Nt = 1 A + A-’ = 2.0032 

767.48 811.99 

I 23799.95 NT 

697563.86 NNT 

II 23727.94 NT 

III 23802.13 NT 

Nf = 3 A + A-’ = 2.0021 

582.68 609.76 

I 15403.14 NT 

389095.43 NNT 

II 15372.75 NT 

III 15404.45 NT 

N, = 5 A + A-’ = 2.0005 

423.30 432.81 

I 9104.89 NT 

191536.15 NNT 

II 9100.49 NT 

III 9105.12 NT 
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TABLE IV 
For R, 
t = 0.0 

N, = 0 A + A-’ = 2.0360 

40.19 48.58 

I 372.30 NT 

2852.95 NNT 

II 361.20 NT 

III 374.38 NT 

Nf = 2 A + K’ = 2.0051 

31.15 33.46 

I 200.54 NT 

1202.02 NNT 

II 199.59 NT 

III 200.74 NT 

N, = 4 A + A-’ = 2.0296 

23.26 19.59 

I 79.58 NT 

323.26 NNT 

II 76.79 NT 

III 80.31 NT 

Nf = 6 A + A’ = 2.7865 

16.52 6.99 

I 12.02 NT 

20.68 NNT 

II -10.33 NT 

III 19.32 NT 

Nf = 1 A + A-’ = 2.0196 

35.53 40.86 

I 280.11 NT 

1920.22 NNT 

II 275.34 NNT 

III 281.07 NT 

Nr = 3 A + A“ = 2.0007 

27.06 26.37 

I 133.62 NT 

677.22 NNT 

II 133.53 NT 

III 133.65 NT 

Nf = 5 A + A” = 2.1687 

19.75 13.13 

I 38.81 NT 

114.71 NNT 

II 28.97 NT 

III 41.67 NT 
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TABLE V 
For R, 
t = 4.0 

N, = 0 A + A-’ = 2.0114 

300.67 334.56 

I 6455.09 NT 

124546.18 NNT 

II 6388.86 NT 

III 6459.15 NT 

Nt = 2 A + A-’ = 2.0078 

232.50 253.98 

I 4230.35 NT 

70462.65 NNT 

II 4200.09 NT 

III 4232.47 NT 

Nf = 4 A+~‘=2.0027 

173.08 182.26 

I 2524.96 NT 

34980.14 NNT 

II 2518.55 NT 

III 2525.49 NT 

Nf = 6 A+A-‘=2.0006 

122.41 119.44 

I 1288.70 NT 

13908.26 NNT 

II 1287.88 NT 

m 1288.78 NT 

Nf = 1 A + A-’ = 2.0098 

265.49 293.16 

I 5274.54 NT 

94899.53 N-NT 

II 5227.55 NT 

III 2277.16 NT 

Nr = 3 A + A-’ = 2.0054 

201.69 217.01 

I 3315.96 NT 

50668.77 NNT 

II 3299.44 NT 

In 3317.21 NT 

N, = 5 A + A-’ = 2.0004 

146.65 149.72 

I 1851.16 NT 

22887.44 NNT 

II 1850.38 NT 

III 1851.23 NT 
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TABLE VI 
For R, 
t = 10.0 

Nt = 0 A + A-’ = 2.0037 

1145.14 1217.28 

I 43787.40 NT 

1575104.06 NNT 

II 43633.63 NT 

III 43792.09 NT 

NF = 2 A + A-’ = 2.0031 

884.91 935.17 

I 29399.17 NT 

924224.42 NNT 

II 29314.25 NT 

III 29402.13 NT 

N, = 4 A + A-’ = 2.0018 

658.18 686.69 

I 18380.02 NT 

491962.60 NN-r 

II 18348.35 NT 

III 18381.30 NT 

Nf = 6 A + A-’ = 2.0002 

464.95 471.82 

I 10323.93 NT 

225899.95 N-NT 

II 10321.74 NT 

III 10324.04 NT 

Nf = 1 A + A-’ = 2.0035 

1010.84 1072.02 

I 36146.61 NT 

1218795.65 NNT 

II 36028.87 NT 

III 36150.44 NT 

Nf = 3 A + A-’ = 2.0025 

767.36 806.73 

I 23493.95 NT 

684201.46 NNT 

II 23438.00 NT 

III 23496.25 NT 

Nf = 5 A + A-’ = 2.0010 

557.38 575.05 

I 14006.75 NT 

341167.80 NNl- 

II 13993.52 NT 

III 14007.33 NT 
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Fipure Cautions 

&J The exact (EXA) and the estimated (EST) coefficients vs t for the x3 coefficient of R(t) for N, = 1. 

&J The exact (EXA) and the estimated (EST) coefficients vs t for the x3 coefficient of R(t) for Nf = 5. 

m The exact (EXA) and the estimated (E-ST) coefficients vs t for the x3 coefficient of R,(t) for Nr = 1. 

w The exact (EXA) and the estimated (EST) coefficients vs t for the x3 coefficient of R,(t) for N, = 5. 
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